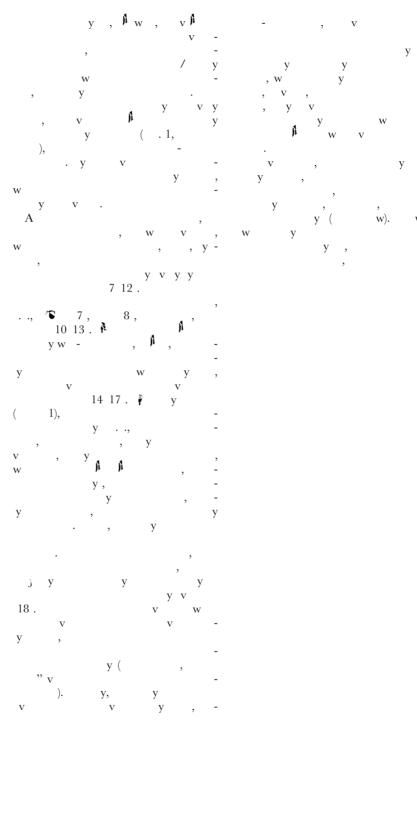
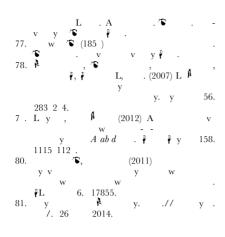

Finding O Wa, hogh Pheno, _e


Andre R. Dean ^{1*}, **6** anna E. Le i ², E. a bi ala^{3,4}, Sal, a ore S. An aldo⁵, Michael A hib rner⁶, Jame P. Balhoff⁷, Da, id C. Blackbi rn⁸, bi di h A. Blake⁹, J. Gordon Bi rleigh¹⁰, Bui no Chane ¹¹, Lib rel D. Cooper¹², Melanie Cib ro ¹³, Sandor C b ¹⁴, Hong **G** i ¹⁵, Wa ila Dahob I ¹⁶, Sandip Da ¹⁷, T. Ale ander Dececchi ¹⁶, Agne De ai ¹¹, **G** i Diogo ¹⁸, Rober E. Dui in k ¹⁹, Michel Di mon ier²⁰, Nico M. Fran ⁵, Frank Friedrich²¹, George V. Gkoi o ²², Meli a Haendel ²³, bi ke J. Harmon ²⁴, Terr F. Ha amiu ²⁵, Yongoi n He ²⁶, Hea her M. Hine ¹, Ni ar Ibrahim ²⁷, Lib ra M. Jack on ¹⁶, Pankaj Jai al ¹², Chri ina Jame -Zorn ²⁸, Seba ian Köhler ²⁹, **G** illo me Lecoin re ¹¹, Hilmar Lapp ⁷, Carol n J. La rence ³⁰, Nicola Le No, ere ³¹, John G. bi ndberg ³², Jame Macklin ³³, bi in R. Ma ³⁴, Pe er E. Midford ³⁵, I an Miko ¹, Chri opher J. Mi ngall ², Anika Oellrich ³⁶, Da, id Ou mi-**G** herland ³⁶, Helen Parkin on ³⁶, Mar n J. Ram re ³⁷, S efan Rich er ³⁸, Pe er N. Robin on ³⁹, Alan Bi enberg ⁴⁰, Ka ja S. Scho I ⁴¹, Erik Segerdell ⁴², Ka ja C. Sel mann ⁴³, Michael J. Sharke ⁴⁴, Aaron D. Smi h ⁴⁵, Barr Smi h ⁴⁶, Chel ea D. Spech ⁴⁷, R. Bi rke Sop ire ⁴⁸, Rober W. Thacker ⁴⁹, Anne The en ⁵⁰, Jo e Fernande -Triana ⁵¹, Mae no Vihinen ⁵², Pe er D. Vi e ⁵³, Lar Vog ⁵⁴, Chri ine E. Wall ⁵⁵, Ramona L. Wall ⁵⁶, Mon e We erfeld ⁵⁷, Rober A. Whar on ⁵⁸, Chri ian S. Wirkner ³⁸, Jame B. Woolle ⁵⁸, Ma he J. Yoder ⁵⁹, Aaron M. Zorn ²⁸, Pe la M. Mabee ¹⁶

1 Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America, 2 Genome Division, Lawrence Berkeley National Lab, Berkeley, California, United States of America, 3 Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America, 4 Phoenix Bioinformatics, Palo Alto, California, United States of America, 5 School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America, 6 Department of Genetics, University of Cambridge, Cambridge, United Kingdom, 7 National Evolutionary Synthesis Center, Durham, North Carolina, United States of America, 8 Department of Vertebrate Zoology and Anthropology, California Academy of Sciences, San Francisco, California, United States of America, 9 The Jackson Laboratory, Bar Harbor, Maine, United States of America, 10 Department of Biology, University of Florida, Gainesville, Florida, United States of America, 11 Muséum national d'Histoire naturelle, Département Systématique et Evolution, Paris, France, 12 Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America, 13 Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada, 14 MTA-ELTE-MTM, Ecology Research Group, Pázmány Péter sétány 1C, Budapest, Hungary, 15 School of Information Resources and Library Science, University of Arizona, Tucson, Arizona, United States of America, 16 Department of Biology, University of South Dakota, Vermillion, South Dakota, United States of America, 17 Department of Botany, University of Delhi, Delhi, India, 18 Department of Anatomy, Howard University College of Medicine, Washington D.C., United States of America, 19 Department of Oral Biology, College of Dentistry, University of Illinois, Chicago, Illinois, United States of America, 20 Stanford Center for Biomedical Informatics Research, Stanford, California, United States of America, 21 Biocenter Grindel and Zoological Museum, Hamburg University, Hamburg, Germany, 22 Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom, 23 Department of Medical Informatics & Epidemiology, Oregon Health & Science University, Portland, Oregon, United States of America, 24 Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America, 25 Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, Maine, United States of America, 26 Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michiqan Medical School, Ann Arbor, Michigan, United States of America, 27 Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America, 28 Cincinnati Children's Hospital, Division of Developmental Biology, Cincinnati, Ohio, United States of America, 29 Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany, 30 Department of Genetics, Development and Cell Biology and Department of Agronomy, Iowa State University, Ames, Iowa, United States of America, 31 Signalling ISP, Babraham Institute, Babraham, Cambridgeshire, UK, 32 Department of Ichthyology, The Academy of Natural Science

ac: Despite a large and Ab multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensusbased, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.


In rod c ion

Achie, ing Da a In egra ion

